Researchers at the Indian Institute of Technology (IIT) Kharagpur have developed cellulose nanocrystals from cucumber peels with high cellulose content
Jayeeta Mitra (L) and N. Sai Prasanna (R)
Throwing away cucumber peels after preparing your salad could be a past phenomenon. Researchers at the Indian Institute of Technology (IIT) Kharagpur have developed cellulose nanocrystals from cucumber peels with high cellulose content, compared to other peel wastes, which can be used to create food packaging materials. While single-use plastic is consciously being avoided by consumers, they remain largely in circulation as food packaging items. Natural biopolymers are unable to make a way in this industry as they lack strength, elongation, barrier property, optical property, and in some cases even biological safety. The cellulose nanomaterial developed by Prof. Jayeeta Mitra and research scholar N. Sai Prasanna at IIT Kharagpur’s from raw cucumber waste has addressed this challenge.
Talking about the findings, she further added, “Our study shows that cellulose nanocrystals derived from cucumber peels possess modifiable properties due to the presence of abundant hydroxyl groups, which resulted in better biodegradability and biocompatibility. These nanocellulose materials emerged as strong, renewable and economic material of the near future, due to unique properties like a high surface area to volume ratio, light in weight, and excellent mechanical properties. Thereby, such nanocrystals, when reinforced as nano-fillers in bio-composites films, can produce effective food packaging materials with low oxygen permeabilities."
This non-toxic, biodegradable and biocompatible product has no adverse effects on health and the environment hence could have a huge market potential by rendering management of organic waste with high cellulose content profitable. “Apart from the food packaging and beverage industries the researchers are optimistic about its scope in various fields like thermo-reversible and tenable hydrogels making, paper making, coating additives, food packaging materials, bio-composites, optically transparent films, as stabilizers in the oil-water emulsion. Also, CNCs find good potential applications in biopharmaceutical applications such as drug delivery and fabricating temporary implants like sutures, stents etc.,” added Sai Prasanna. More research and product development focused on various biopolymers from either macromolecules or the microbial polymers would be able to make the sector acceptable to packing material producers with wider awareness, alternative products at economic prices,” she said. This study has been published in the Carbohydrate Polymers Research Journal.
Source: Edited from India Science Wire release