Quantum computers, which work according to the strange rules of quantum mechanics, may one day revolutionise the world. Once we have managed to build a powerful working machine, it will be able to solve some problems that take today’s computers millions of years to compute.
Computers use bits (0 or 1) to encode information. Quantum computers use “qubits” – which can take any value between zero and one – giving them huge processing power. But quantum systems are notoriously fragile, and although progress has been made to build working machines for some proposed applications, the task remains difficult. But a new approach, dubbed molecular spintronics, offers fresh hope.
This year’s Nobel Prize in Physics rewards new understanding of the universe’s structure and history, and the first discovery of a planet orbiting a solar-type star outside our solar system.
The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics 2019 “for contributions to our understanding of the evolution of the universe and Earth’s place in the cosmos” with one half to James Peebles, Princeton University, USA “for theoretical discoveries in physical cosmology”and the other half jointly to Michel Mayor, University of Geneva, Switzerland and Didier Queloz University of Geneva, Switzerland, University of Cambridge, UK “for the discovery of an exoplanet orbiting a solar-type star”
Priyanka Bakaya an MIT alumna founded Renewlogy to develop a system that converts plastic waste into fuel. Today, after a decade that system is being used to profitably turn even nonrecyclable plastic into high-value fuels like diesel, as well as the precursors to new plastics.
In the battle against antibiotic resistance, many scientists have been trying to deploy naturally occurring viruses called bacteriophages that can infect and kill bacteria.
Bacteriophages kill bacteria through different mechanisms than antibiotics, and they can target specific strains, making them an appealing option for potentially overcoming multidrug resistance. However, quickly finding and optimizing well-defined bacteriophages to use against a bacterial target is challenging.
In a new study, MIT biological engineers showed that they could rapidly program bacteriophages to kill different strains of E. coli by making mutations in a viral protein that binds to host cells. These engineered bacteriophages are also less likely to provoke resistance in bacteria, the researchers found.
During the fag end of 2015, Chennai experienced severe floods resulting in the death of about 500 people and economic losses of about INR 50,000 crores. The flooding stranded the city and was termed a 'man-made disaster' resulting from irresponsible water management and rapid urbanisation. The northeast monsoon of the year left most parts of South India marooned, exposing how vulnerable our cities are to such catastrophes.
"That's when the Office of the Principal Scientific Adviser took a major initiative to develop a real-time, integrated, urban flood forecasting system that was non-existent in our country. It called for a meeting of experts among multiple government agencies and academia," recalls Prof Subimal Ghosh. He is currently a Professor at the Department of Civil Engineering, Indian Institute of Technology Bombay (IIT Bombay). Soon after, with a team of scientists from various institutes across the country, he swung into action to develop the first-ever expert system in India to forecast floods.
Researchers at the Centre for Nano Science and Engineering (CeNSE), IISc, have developed a technique to trap and move nano-sized particles in a fluidic medium using only light.The nanotweezer technology, developed by PhD student Souvik Ghosh and Ambarish Ghosh, Associate Professor at CeNSE, uses a focused laser beam to trap and manoeuvre a nano-sized silver disk, which in turn can attract and ensnare nanoparticles when light is shined on it.
The study was published in Nature Communications.
Many drugs, especially those made of proteins, cannot be taken orally because they are broken down in the gastrointestinal tract before they can take effect. One example is insulin, which patients with diabetes have to inject daily or even more frequently.
In hopes of coming up with an alternative to those injections, MIT engineers, working with scientists from Novo Nordisk, have designed a new drug capsule that can carry insulin or other protein drugs and protect them from the harsh environment of the gastrointestinal tract. When the capsule reaches the small intestine, it breaks down to reveal dissolvable microneedles that attach to the intestinal wall and release drug for uptake into the bloodstream.
Nature supports people in critical ways, often at a highly local level. Wild bees buzz through farms, pollinating vegetables as they go. Nearby, wetlands remove chemicals from the farm’s runoff, protecting a community drinking water source. In communities all around the world, nature’s contributions are constantly flowing to people. Scientists have mapped these contributions at local levels for years, but a new Stanford-led study puts these local analyses on an interactive global map that emphasizes nature’s declining ability to protect people from water pollution, coastal storms and underpollinated crops.
The fabled use of canaries in coal mines as an early warning of carbon monoxide stemmed from the birds’ extreme sensitivity to toxic conditions compared to humans.
In that vein, some avian species can indicate environmental distress brought on by overdevelopment, habitat loss and rising global temperatures before an ecosystem has collapsed. Not all bird species, however, respond to environmental disturbances equally.
Researchers from Princeton University set out to help determine the characteristics that make certain species more sensitive to environmental pressures. They recently reported in the journal Ecography that a bird species’ ability to adapt to seasonal temperature changes may be one factor in whether it can better withstand environmental disruption. The study focused on how temperature changes and the conversion of forests to agricultural land affected 135 bird species in the Himalayas. Species living in the seasonal western Himalayas adapted to deforestation more readily than birds native to the tropical eastern Himalayas.
New cellular and molecular processes underlying communication between gut microbes and brain cells have been described for the first time by scientists at Weill Cornell Medicine and Cornell’s Ithaca campus.
Over the last two decades, scientists have observed a clear link between autoimmune disorders and a variety of psychiatric conditions. For example, people with autoimmune disorders such as inflammatory bowel disease (IBD), psoriasis and multiple sclerosis may also have depleted gut microbiota and experience anxiety, depression and mood disorders.
Genetic risks for autoimmune disorders and psychiatric disorders also appear to be closely related, but precisely how gut health affects brain health has been unknown.
ETH researchers use artificial intelligence to improve quality of images recorded by a relatively new biomedical imaging method. This paves the way towards more accurate diagnosis and cost-effective devices.
Scientists at ETH Zurich and the University of Zurich have used machine learning methods to improve optoacoustic imaging. This relatively young medical imaging technique can be used for applications such as visualizing blood vessels, studying brain activity, characterizing skin lesions and diagnosing breast cancer. However, quality of the rendered images is very dependent on the number and distribution of sensors used by the device: the more of them, the better the image quality. The new approach developed by the ETH researchers allows for substantial reduction of the number of sensors without giving up on the resulting image quality. This makes it possible to reduce the device cost, increase imaging speed or improve diagnosis.
Electrical engineers at Duke University have devised a fully print-in-place technique for electronics that is gentle enough to work on delicate surfaces including paper and human skin. The advance could enable technologies such as high-adhesion, embedded electronic tattoos and bandages tricked out with patient-specific biosensors.
The techniques are described in a series of papers published online July 9 in the journal Nanoscale and on October 3 in the journal ACS Nano.
A preventive treatment developed by Stanford researchers could greatly reduce the incidence and severity of wildfires. The approach, outlined Sept. 30 in Proceedings of the National Academy of Sciences, involves an environmentally benign gel-like fluid that helps common wildland fire retardants last longer on vegetation.
Applied to ignition-prone areas, these materials retain their ability to prevent fires throughout the peak fire season, even after weathering that would sweep away conventional fire retardants. By stopping fires from starting, such treatments can be more effective and less expensive than current firefighting methods.
Today’s commercial aircraft are typically manufactured in sections, often in different locations — wings at one factory, fuselage sections at another, tail components somewhere else — and then flown to a central plant in huge cargo planes for final assembly.
But what if the final assembly was the only assembly, with the whole plane built out of a large array of tiny identical pieces, all put together by an army of tiny robots?
If you were to pry open your smartphone, you would see an array of electronic chips and components laid out across a circuit board, like a miniature city. Each component might contain even smaller “chiplets,” some no wider than a human hair. These elements are often assembled with robotic grippers designed to pick up the components and place them down in precise configurations.
Rescuing victims from a burning building, a chemical spill, or any disaster that is inaccessible to human responders could one day be a mission for resilient, adaptable robots. Imagine, for instance, rescue-bots that can bound through rubble on all fours, then rise up on two legs to push aside a heavy obstacle or break through a locked door.
Engineers are making strides on the design of four-legged robots and their ability to run, jump and even do backflips. But getting two-legged, humanoid robots to exert force or push against something without falling has been a significant stumbling block.
Now engineers at MIT and the University of Illinois at Urbana-Champaign have developed a method to control balance in a two-legged, teleoperated robot — an essential step toward enabling a humanoid to carry out high-impact tasks in challenging environments.
This Feature will be available soon..
Name | |